Sains Malaysiana 54(1)(2025):
211-224
http://doi.org/10.17576/jsm-2025-5401-17
Enhanced Toxicity
and Antifungal Effects of Iron-Oxide Chitosan/Samarium/Ranitidine
Microparticles
(Sitotoksisiti Dipertingkatkan dan Kesan
Antikulat bagi Zarah Mikro Kitosan/Samarium/Ranitidine Oksida Besi)
ENY
KUSRINI1,2,3,*, KHAIRU NUZULA1, ANWAR USMAN4,
LEE D. WILSON5, CINDY GUNAWAN6 & AGUS
BUDI PRASETYO7
1Department of Chemical Engineering, Faculty
of Engineering, Universitas Indonesia, Kampus Baru UI Depok, 16424, Indonesia
2Research Group of Green Product and Fine Chemical Engineering,
Laboratory of Chemical Product Engineering, Department of Chemical Engineering,
Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia
3Tropical Renewable Energy Research Center, Faculty of Engineering,
Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia
4Department of Chemistry, Faculty of Science, Universiti Brunei
Darussalam, Jalan Tungku Link, Gadong BE1410, Negara Brunei Darussalam
5Department of Chemistry, University of
Saskatchewan 110 Science Place, Room 156 Thorvaldson Building, Saskatoon, SK
S7N 5C9, Canada
6ithree institute, University of Technology Sydney, Sydney, NSW
2007, Australia
7Research Center for Metallurgy, National Research and Innovation Agency
(BRIN), KST, BJ. Habibie, Puspitek Area, Setu, Tangerang Selatan, 15314,
Indonesia
Received: 25 June
2024/Accepted: 30 October 2024
Abstract
This
study aimed to investigate the cytotoxicity and antifungal properties of Sm(NO3)3.6H2O
salt, chitosan/Sm complex, iron oxide (Fe3O4 NPs), and
iron-oxide modified chitosan/Sm/ranitidine microparticles. The
microparticles of iron-oxide modified chitosan/Sm/ranitidine composites were
synthesized from various masses of Sm(NO3)3.6H2O
(250-350
mg), chitosan (2,000-2,500 mg), and (5-25 mg) through
the microwave-assisted evaporation method. The Fe3O4 NPs and ranitidine/Sm were mixed with chitosan through a dispersion method by microwave. The toxicity studies of iron-oxide modified
chitosan/Sm/ranitidine composites showed 50%
lethal concentration in the range from 3,600 to 3,900 µg/mL on the
aquatic crustacean Artemia salina, suggesting their slight
toxicity. Antifungal activities for all samples were determined using the agar
diffusion and serial dilution methods. The iron-oxide modified chitosan/Sm/ranitidine composites showed
inhibition zone diameter of Aspergillus niger from 18.33 to 14.67 mm at
1,000 µg/mL. All composites and chitosan/Sm complex showed bioactivity
properties with minimum inhibitory concentration values of 2.5 µg/mL against A.
niger. These composites and chitosan/Sm complex have the same minimum
fungicidal concentration, showing the potential to inhibit fungi. Overall
results suggested that modifying the structure of chitosan using Sm3+,
Fe3O4 NPs, and ranitidine enhanced its physical,
chemical, and biological properties as an antifungal agent.
Keywords:
Antifungal agent; cytotoxicity studies;
iron-oxide modified chitosan/Sm/ranitidine microparticles; microwave-assisted evaporation
Abstract
Penyelidikan
ini bertujuan untuk mengkaji sifat sitotoksisiti dan antikulat garam Sm(NO3)3.6H2O,
kompleks kitosan/Sm, oksida besi (Fe3O4 NPs) dan zarah mikro kitosan/Sm/ranitidin terubah suai besi-oksida. Zarah mikro bagi
komposit kitosan/Sm/ranitidine terubah suai besi-oksida telah disintesis
daripada pelbagai jisim Sm(NO3)3.6H2O (250-350
mg), kitosan (2,000-2,500 mg) dan (5-25 mg) melalui kaedah penyejatan gelombang
mikro-berbantu. NP Fe3O4 dan ranitidine/Sm
dicampur dengan kitosan melalui kaedah serakan oleh gelombang mikro. Kajian
sitotoksisiti bagi komposit kitosan/Sm/ranitidine terubah suai besi-oksida
menunjukkan 50% kepekatan maut dalam julat dari 3,600 hingga 3,900 µg/mL pada
krustasea akuatik Artemia salina yang menunjukkan sedikit ketoksikannya.
Aktiviti antikulat untuk semua sampel ditentukan menggunakan kaedah penyebaran
agar dan pencairan bersiri. Komposit kitosan/Sm/ranitidine terubah suai
besi-oksida menunjukkan diameter zon perencatan Aspergillus niger daripada 18.33 hingga 14.67 mm pada 1,000 µg/mL. Semua komposit dan kompleks
kitosan/Sm menunjukkan sifat bioaktiviti dengan nilai kepekatan perencatan
minimum 2.5 µg/mL terhadap A. niger. Komposit dan kompleks kitosan/Sm
ini mempunyai kepekatan racun kulat minimum yang sama yang menunjukkan potensi
untuk menghalang kulat. Keputusan keseluruhan mencadangkan pengubahsuaian
struktur kitosan menggunakan Sm3+, Fe3O4 NPs dan ranitidine
meningkatkan sifat fizikal, kimia dan biologinya sebagai agen antikulat.
Kata kunci: Agen
antikulat; kajian sitotoksisiti; mikro zarah kitosan/Sm/ranitidine terubah suai
besi-oksida; penyejatan gelombang mikro-berbantu
REFERENCES
Asrahwi, M.A., Rosman,
N.A., Shahri, N.N.M., Santos, J.H., Kusrini, E., Thongratkaew, S.,
Faungnawakij, K., Hassan, S., Mahadi, A.H. & Usman A. 2023. Solid-state
mechanochemical synthesis of chitosan from mud crab (Scylla serrata)
chitin. Carbohydrate Research 534: 108971.
https://doi.org/10.1016/j.carres.2023.108971
Balasubramanian, K.P.,
Karvembu, R., Prabhakaran, R., Chinnusamy, V. & Natarajan, K. 2007.
Synthesis, spectral, catalytic and antimicrobial studies of PPh3/AsPh3 complexes of Ru(II) with dibasic tridentate O, N, S donor ligands. Spectrochimica
Acta Part A 68: 50-54. https://doi.org/10.1016/j.saa.2006.10.049
Bhavyasree, P.G. &
Xavier, T.S. 2020. Green synthesis of copper oxide/carbon nanocomposites using
the leaf extract of Adhatoda vasica Nees, their characterization and
antimicrobial activity. Heliyon 6: e03323.
https://doi.org/10.1016/j.heliyon.2020.e03323
Cota, I.,
Marturano, V. & Tylkowski, B. 2019. Ln complexes as double faced agents: Study of antibacterial and
antifungal activity. Coordination Chemistry Reviews 396: 49-71. https://doi.org/10.1016/j.ccr.2019.05.019
Chandra, S. &
Agrawal, S. 2014. Spectroscopic characterization of Lanthanoid derived from a
hexadentate macrocyclic ligand: Study on antifungal capacity of complexes. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy 124: 564-570.
https://doi.org/10.1016/j.saa.2014.01.042
Devineni, S.R.,
Doddaga, S., Donka, R. & Chamarthi, N.R. 2013. CeCl3·7H2O-SiO2:
Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant
activities of α-diaminophosphonates. Chinese Chemical Letters 24:
759-763. https://doi.org/10.1016/j.cclet.2013.04.037
Hassani, S., Laouini,
A., Fessi, H. & Charcosset, C. 2015. Preparation of chitosan–TPP
nanoparticles using microengineered membranes - Effect of parameters and
encapsulation of tacrine. Colloids and Surfaces A: Physicochemical and
Engineering Aspects 482: 34-43.
https://doi.org/10.1016/j.colsurfa.2015.04.006
Khezripour, A.R., Souri, D., Tavafi, H. & Ghabooli, M. 2019. Serial dilution bioassay for the
detection of antibacterial potential of ZnSe quantum dots and their Fourier
transform infra-red spectroscopy. Measurement 148: 106939.
https://doi.org/10.1016/j.measurement.2019.106939
Kusrini,
E., Alhamid, M.I., Wulandari, D.A., Fatkhurrahman, M., Shahrin, E.W.E.S.,
Shahri, N.N.M., Usman, A., Prasetyo, A.B., Sufyan, M., Rahman, A.,
Nugrahaningtyas, K.D. & Santosa, S.J. 2024. Simultaneous adsorption of
multicomponent lanthanide ions on pectin encapsulated zeolite A. EVERGREEN
Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy 11(01): 371-378. https://doi.org/10.5109/7172296
Kusrini, E., Safira,
A.I., Usman, A., Prasetyanto, E.A., Nugrahaningtyas, K.D., Santosa, S.J. &
Wilson, L.D. 2023a. Nanocomposites of terbium sulfide nanoparticles with a
chitosan capping agent for antibacterial applications. Journal of
Composites Science 7: 39. https://doi.org/10.3390/jcs7010039
Kusrini, E., Wilson,
L.D., Padmosoedarso, K.M., Mawarni, D.P., Sufyan, M. & Usman, A. 2023b.
Synthesis of chitosan capped zinc sulphide nanoparticle composites as an
antibacterial agent for liquid handwash disinfectant applications. Journal
of Composites Science 7: 52. https:// doi.org/10.3390/jcs7020052
Kusrini, E., Sabira,
K., Hashim, F., Putra, N., Prasetyanto, E.A., Abdullah, N.A. & Usman, A.
2021. Design, synthesis, and antimicrobial activity of dysprosium-based nanoparticles
using contact lenses as carrier against Acanthamoeba keratitis. Acta
Ophthalmologica 99(2): e178-e188. https://doi.org/10.1111/aos.14541
Kusrini, E., Hashim, F., Saleh, M.I., Adnan, R., Usman, A., Zakaria, I.N.,
Prihandini, W.W., Putra, N. & Prasetyanto, E.A. 2020. Monoclinic
cerium(III) picrate tetraethylene glycol complex: Design,
synthesis and biological evaluation as anti-amoebic activity against Acanthamoeba sp. Journal of Materials Science 55: 9795-9811.
https://doi.org/10.1007/s10853-020-04793-2
Kusrini,
E., Hashim, F., Gunawan, C., Mann, R., Noor Azmi,
W.N.N.W.N. & Amin, N.M.
2018. Anti-amoebic activity of acyclic and cyclic-samarium complexes on
Acanthamoeba. Parasitology Research 117: 1409-1417.
https://doi.org/10.1007/s00436-018-5814-x
Kusrini, E.,
Prassanti, R., Nurjaya, D.M. & Gunawan, C. 2017. Multifunctional microsphere formulation of fluorescent magnetic properties for
drug delivery system. AIP Conference Proceedings 1817: 030011.
https://doi.org/10.1063/1.4976780
Kusrini, E., Hashim,
F., Noor Azmi, W.N.N.W., Amin, N.M. & Estuningtyas, A. 2016. A novel
antiamoebic agent against Acanthamoeba sp. - A
causative agent for eye keratitis infection. Spectrochimica Acta Part A:
Molecular and Biomolecular Spectroscopy 153: 714-721.
https://doi.org/10.1016/j.saa.2015.09.021
Kusrini, E., Arbianti,
R., Sofyan, N., Abdullah, M.A.A. & Andriani, F. 2014. Modification of
chitosan by using samarium for potential use in drug delivery system. Spectrochimica
Acta Part A: Molecular and Biomolecular Spectroscopy 120: 77-83.
http://dx.doi.org/10.1016/j.saa.2013.09.132
Kusrini, E., Sofyan,
N., Nurjaya, D.M., Santoso & Tristantini, D. 2013. Removal of heavy metals
from aqueous solution by hydroxyapatite/chitosan composite. Advanced Materials
Research 789: 176-179.
https://doi.org/10.4028/www.scientific.net/AMR.789.176
Mayer, B.N.,
Ferrigni,
N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E. & McLaughin, J.L. 1982.
Brine shrimp: A convenient general bioassay for active plant constituents. Planta
Medica 45(5): 31-34. https://doi.org/10.1055/s-2007-971236
Mimouni,
M., Khardli, F.Z., Warad, I., Ahmad, M., Mubarak, M.S., Sultana, S. &
Hadda, T.B. 2014. Antimicrobial activity of naturally occurring antibiotics
monensin, lasalocid and their metal complexes. Journal of Materials
Environmental Science 5(1): 207-214.
Mohanan, K., Kumari,
B.S. & Rijulal, G. 2008. Microwave assisted synthesis, spectroscopic,
thermal, and antifungal studies of some lanthanide(III) complexes with a
heterocyclic bishydrazone. Journal of Rare Earths 26: 16-21.
https://doi.org/10.1016/S1002-0721(08)60028-9
Momani, W.M.A., Taha, Z.A., Ajlouni, A.A.M.,
Shaqra, Q.M.A. & Zouby, M.A. 2012. A study of in vitro antibacterial
activity of lanthanides complexes with a tetradentate Schiff base ligand. Asian
Pacific Journal of Tropical Biomedicine 3(5): 367-370.
https://doi.org/10.1016/S2221-1691(13)60078-7
Nishat, N. &
Malik, A. 2012. Synthesis, spectral characterization thermal stability,
antimicrobial studies and biodegradation of starch–thiourea based biodegradable
polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II),
Cu(II), and Zn(II)] metals. Journal of Saudi Chemical Society 1319-1332.
https://doi.org/10.1016/j.jscs.2012.07.017
Patel, M.P., Patel, R.R.
& Patel, J.K. 2010. Chitosan mediated targeted
drug delivery system: A review. Journal of Pharmacy &
Pharmaceutical Sciences 13(3): 536-557. DOI: 10.18433/j3jc7c
Patil, S.K., Naik,
V.M., Bilehal, D.C. & Mallur, N.B. 2011. Synthesis, spectral
and antimicrobial studies of lanthanide (III) nitrate complexes with terdentate
ONO donor hydrazones. Journal of Experimental Science 2(7): 15-20.
Peng, H., Liu, G., Dong,
X., Wang, J., Yu, W. & Xu, J. 2012. Magnetic, luminescent and core–shell
structured Fe3O4@YF3:Ce3+,Tb3+ bifunctional nanocomposites. Powder Technology 215-216: 242-246.
https://doi.org/10.1016/j.powtec.2011.10.006
Qin, Y., Lia, P. &
Guo, Z. 2020. Cationic chitosan derivatives as potential antifungals: A review
of structural optimization and applications. Carbohydrate Polymers 23615: 116002. https://doi.org/10.1016/j.carbpol.2020.116002
Rahdar, A., Aliahmad,
M., Samani, M., Majd, M.H. & Susan, M.A.H. 2019. Synthesis and
characterization of highly efficacious Fe-doped ceria nanoparticles for
cytotoxic and antifungal activity. Ceramics Internasional 45: 7950-7955.
https://doi.org/10.1016/j.ceramint.2019.01.108
Rosman, N.A., Asrahwi,
M.A., Narudin, N.A.H., Sahid, M.S.M., Dewi, R., Shamsuddin, N., Roil Bilad, M.,
Kusrini, E., Hobley, J. & Usman, A. 2023. Chitin and chitosan: Isolation,
deacetylation, and prospective biomedical, cosmetic, and food applications. In Advanced
Materials towards Energy Sustainability. Boca Raton: CRC Press. pp.
129-150. https://doi.org/10.1201/9781003367819-7
Rouis, Z., Abid, N.,
Koudja, S., Yangui, T., Elaissi, A., Cioni, P.L., Flamini, G. & Aouni, M.
2013. Evaluation of the cytotoxic effect and antibacterial, antifungal, and
antiviral activities of Hypericum triquetrifolium Turra essential oils
from Tunisia. BMC Complementary and Alternative
Medicine 13: 24. https://doi.org/10.1186/1472-6882-13-24
Shahri, N.N.M., Taha,
H., Hamid, M.H.S.A., Kusrini, E., Lim, J-W., Hobley, J. & Usman, A. 2022.
Antimicrobial activity of silver sulfide quantum dots functionalized with
highly conjugated Schiff bases in a one-step synthesis. RSC Advances 12:
3136-3146. https://doi.org/10.1039/D1RA08296E
Sivaraj,
R., Rahman, P.K.S.M., Rajiv, P., Narendhran, S. & Venckatesh, R. 2014.
Biosynthesis and characterization of Acalypha indica mediated copper
oxide nanoparticles and their evaluation of its antimicrobial and anticancer
activity. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy
129: 255-258. https://doi.org/10.1016/j.saa.2014.03.027
Thanou, M., Verhoef, J.C. & Junginger, H.E. 2001. Oral drug absorption enhancement
by chitosan and its derivatives. Advanced Drug Delivery Reviews 52(2): 117-126.
https://doi.org/10.1016/S0169-409X(01)00231-9
Usman,
A., Kusrini, E., Wilson L.D., Santos, J.H. & Nur, M. 2024. Chapter 9:
Chitosan and chitosan-based nanomaterials in decontamination of pharmaceutical
waste. In Chitosan-Based Hybrid Nanomaterials, Emerging Applications of
Chitosan-Based Nanomaterial, 1st ed., edited by Ali, N., Bilal,
M., Khan, A., Nguyen, T.A. Elsevier. pp. 153-180.
https://doi.org/10.1016/B978-0-443-21891-0.00009-3
Usman,
A., Kusrini, E., Widiantoro, A.B., Hardiya, E., Abdullah, N.A. & Yulizar,
Y. 2018. Fabrication of chitosan
nanoparticles containing samarium ion potentially applicable for fluorescence
detection and energy transfer. International Journal of Technology 9(6):
1112-1120. https://doi.org/10.14716/ijtech.v9i6.2576
Wang, W., Xiangpeng,
J. & Kezheng, C. 2011. Lanthanide-doped chitosan nanospheres as
cell nuclei illuminator and fluorescent nonviral vector for plasmid DNA
delivery. Dalton Transactions 41: 490-497. https://doi.org/10.1039/C1DT11200G
Wibowo, A., Jatmiko,
A., Ananda, M.B., Rachmawati, S.A., Ardy, H., Aimon, A.H. & Iskandar, F.
2021. Facile fabrication of polyelectrolyte complex nanoparticles based on
chitosan – poly-2-acrylamido-2-methylpropane sulfonic acid as a potential drug
carrier material. International Journal of Technology 12(3): 561-570.
https://doi.org/10.14716/ijtech.v12i3.4193
Zhao, Y.,
Qiu, Z. & Huang, J. 2008.
Preparation and analysis of Fe3O4 magnetic nanoparticles
used as targeted-drug carriers. Chinese Journal of Chemical Engineering 16: 451-455. https://doi.org/10.1016/S1004-9541(08)60104-4
*Corresponding author; email:
eny.k@ui.ac.id (EK)